Content enrichment
We can help you make data a more powerful resource by getting more out of it, doing more with it, accessing it more easily. Combining best-of-breed text mining technologies with human domain expertise enables us to know the correct answers and solutions to essential challenges. A team of 400+ data analysts, who speak 40+ languages and boast extensive country, region and industry-specific knowledge, train the technology with your own data set, allowing us to reach accuracy rates usually only achievable manually.

Problems
Enormous quantity of data which needs
to be analysed in order for you to identify
and classify specific entities of interest.

Solution: Entity extraction & classification
Pinpointing people, places, companies, events in your content.
Our machine learning models are so sophisticated,
you’ll discover entities you didn’t know about.

Problems
Serving relevant content to your audiences.
Updating an outdated taxonomy, but it is expensive
and time-consuming for a human to do it.

Solution: Multi-label tagging
Automatically evaluating a piece of content and tagging it
to a set of categories like topics, industries, countries.
Automatically applying a taxonomy on millions of articles.

Problems
Struggling to extract and evaluate in a short time
the mentions of your company, products, events or campaigns.
Getting a quick overview of your brand health.

Solution: Sentiment analysis
Automatically extracting sentiments (positivity/negativity)
and emotions (liking, anger, disgust, etc.)
from unstructured text information.

Problems
Looking for ways to automate content recommendations
that will engage visitors to your website.

Solution: Content recommendations
Automatically grouping similar documents together
and generating relevant content recommendations.

Case study
A global financial data and news publisher had a request for processing a large set of news articles to extract entities which were reported to have been involved in a specific criminal activity as well as the phase of the legal process and the crime’s monetary value. Our solution was to use semantic technologies based on entity-related context and specific rules for relevancy prediction based on the project criteria. NER and entity classification, both based on machine learning, came in handy – we’ve trained a classifier to identify the entities which the client was interested in.